若函数f(x)=(a^x+a-3)/(lna)为单调函数 且存在实数mn当x∈【m,n】y属于【m,n】求a的取值范围
题目
若函数f(x)=(a^x+a-3)/(lna)为单调函数 且存在实数mn当x∈【m,n】y属于【m,n】求a的取值范围
答案
f'(x)=a^x>0,
f(x)在R上单调增,所以有:
f(m)=m=(a^m+a-3)/lna
f(n)=n=(a^n+a-3)/lna
即方程x=(a^x+a-3)/lna=f(x) 有两个不同的实根m,n
令g(x)=f(x)-x=0,需有两个不同的实根m,n
g'(x)=a^x-1=0,得极值点x=0
g(0)=(a-2)/lna
a>1时,为极小值点,需 g(0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点