不等式证明题.

不等式证明题.

题目
不等式证明题.
不等式证明对于任意n属于正整数,x1,x2,x3,…xn均为非负实数,且x1+x2+x3…+xn≤1/2,证明(1-x1)(1-x2)…(1-xn)≥1/2成立.
如何证明?
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.