设F1,F2是双曲线x29−y216=1的两个焦点,点P在双曲线上,且∠F1PF2=60°,△F1PF2的面积_.

设F1,F2是双曲线x29−y216=1的两个焦点,点P在双曲线上,且∠F1PF2=60°,△F1PF2的面积_.

题目
设F1,F2是双曲线
x
答案
由题意x29−y216=1,可得 F2(5,0),F1 (-5,0),由余弦定理可得 100=PF12+PF22-2PF1•PF2cos60°=(PF1-PF2)2+PF1•PF2=36+PF1•PF2,∴PF1•PF2=64.S△F1PF2=12PF1•PF2sin60°=12×64×32=163.故答...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.