一道三角恒等变换题

一道三角恒等变换题

题目
一道三角恒等变换题
是否存在锐角α和β,使得①α+2β=2π/3;②tanα/2*tanβ=2-√3 同时成立?若存在,求出角α和β的值;若不存在,说明理由.
答案
tαn(α/2+β)=[tαn(α/2)+tαnβ]/[1-tαn(α/2)tαnβ]
即tαn(π/3)=[tαn(α/2)+tαnβ]/[1-(2-√3)]=√3
tαn(α/2)+tαnβ=√3(√3-1)
tαn(α/2)+tαnβ=3-√3
可知(tαnα/2)与tαnβ是方程x^2-(3-√3)x+2-√3=0的两根
(x-(2-√3))(x-1)=0
x=2-√3>0 x=1>0
由锐角α,β tαnα>0 tαnβ>0
可知存在锐角α,β
tαnα=2-√3 tαnβ=1 or tαnα=1 tαnβ=2-√3
α=π/12 β=π/4 or α=π/4 β=π/12
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.