对于任何的实数t,抛物线y=x2+(2-t)x+t总经过一个固定的点,这个点是( ) A.(1,0) B.(-1,0) C.(-1,3) D.(1,3)
题目
对于任何的实数t,抛物线y=x2+(2-t)x+t总经过一个固定的点,这个点是( )
A. (1,0)
B. (-1,0)
C. (-1,3)
D. (1,3)
答案
把y=x2+(2-t)x+t变形得到(1-x)t=y-x2-2x,
∵对于任何的实数t,抛物线y=x2+(2-t)x+t总经过一个固定的点,
∴1-x=0且y-x2-2x=0,
∴x=1,y=3,
即这个固定的点的坐标为(1,3).
故选D.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点