f(1+x)=f(1-x)的周期是4.它是怎样证明出来的..

f(1+x)=f(1-x)的周期是4.它是怎样证明出来的..

题目
f(1+x)=f(1-x)的周期是4.它是怎样证明出来的..
答案
令x=x-1,则f(x)=f(2-x)
令x=-1-x,则f(-x)=f(2+x)
f(x)=f(2-x)=f(2+2-x)=f(4-x)=f(-x)
所以f(x)=f(x+4),所以他的周期为4.而且为偶函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.