要使函数f(x)=[√(1+x)-√(1-x)]/x在x=0处连续,f(x)应该补充定义的数值是多少?
题目
要使函数f(x)=[√(1+x)-√(1-x)]/x在x=0处连续,f(x)应该补充定义的数值是多少?
答案
函数在某点连续的定义是:在该点处的极限值等于函数值,
这个函数在x=0处没有定义的,只有通过补充定义才能使其连续,根据连续的定义只需定义
f(0)=“0处的极限”,下面求:0处的极限
f(x)=[√(1+x)-√(1-x)]/x=[√(1+x)-√(1-x)][√(1+x)+√(1-x)]/(x[√(1+x)+√(1-x)])(此步在分子有理化)
=2/[√(1+x)+√(1-x)],易得:的x趋向于0时,f(x)的极限为1.
于是,补充定义f(0)=1即可.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点