设f(x)在【0,2】连续,且f(x)+f(2-x)≠ 0,问L=∫(0到2)f(x)(2x-x^2)dx/(f(x)+f(2-x))=?

设f(x)在【0,2】连续,且f(x)+f(2-x)≠ 0,问L=∫(0到2)f(x)(2x-x^2)dx/(f(x)+f(2-x))=?

题目
设f(x)在【0,2】连续,且f(x)+f(2-x)≠ 0,问L=∫(0到2)f(x)(2x-x^2)dx/(f(x)+f(2-x))=?
再麻烦说下你想到了设g(t)=∫(1-t到1+t)的思路行么?还有就是从 g(t) 到g'(t)你用的是牛顿莱布尼茨的变上限公式吧?也就是说 ∫(1-t到1+t)拆成∫(0到(1+t))-(-∫(0到(1-t))吧?
补充:
对不起,从g(t)到g'(t)也就是说是把g(t)的原本的积分再求导,积分和导互消,变成了g'(t)=f(x)(2x-x^2)/(f(x)+f(2-x))|(1-t到1+t),,我怎么看这步也应该是把(1+t)代入式子在减去把(1-t)代入式子啊?所以应该中间是-号啊,可为什么你写的是+号呢?我笨,麻烦下再。
答案
设 g(t)=∫(1-t到1+t)f(x)(2x-x^2)dx/(f(x)+f(2-x))则 g(0)=0,L=g(1),g'(t)= (1-t^2)f(1+t)/(f(1+t)+f(1-t))+(1-t^2)f(1-t)/(f(1+t)+f(1-t))= 1-t^2所以 L=∫(0到1)(1-t^2)dt=2/3 因为f未知,只能从被积函数的形式...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.