高数中关于二重积分的计算2

高数中关于二重积分的计算2

题目
高数中关于二重积分的计算2
计算积分∫∫e^y^2dxdy ,其中D是顶点为(0,0)(0,1)(1,1) 的三角形区域.求具体的解算过程.
答案
D的区域为y∈(0,1),x∈(0,y).
先对x后对y进行积分,原式=∫dy∫e^y^2dx,前面上下限分别为1和0,后面上下限分别为y和0.
因后面对x积分,y应看做常数,这样∫e^y^2dx=(e^y^2)*x,再把上下限代入就是=(e^y^2)*y-(e^y^2)*0=(e^y^2)*y.代入原式就是=∫(e^y^2)*ydy=0.5∫(e^y^2)d(y^2)=0.5(e^y^2),再把上下限1,0代入就是(e-1)/2,
不知这样说你能明白不
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.