常微分方程的解存在唯一的问题~

常微分方程的解存在唯一的问题~

题目
常微分方程的解存在唯一的问题~
很多证明题都是直接说:“由已知可得方程满足解的存在唯一定理及解的延拓定理条件.”实在看不出是怎么满足的.做这一类的证明题需要一个什么样的思路?基础差,希望清楚一点.
答案
对于y'=f(x,y)
首先:f(x,y)总在某矩形区域内连续,因此方程的解总可以限制在某个矩形区域
其次:f(x,y)对y满足Lipschitz条件可以用偏导数有界替代,这些条件在一定范围内都是可满足的.
故在非证明常微分方程的解存在唯一的题中,很多都一笔带过
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.