1/(x+1)(x+2)+1/(x+2)(x+3)+…+1/(x+2001)(x+2002)=2001/3x+6006
题目
1/(x+1)(x+2)+1/(x+2)(x+3)+…+1/(x+2001)(x+2002)=2001/3x+6006
答案
1/(x+1)(x+2)+1/(x+2)(x+3)+…+1/(x+2001)(x+2002)=2001/(3x+6006)
1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+…+1/(x+2001)-1/(x+2002)=2001/(3x+6006)
1/(x+1)-1/(x+2002)=2001/(3x+6006)
2001/(x+1)(x+2002)=2001/(3x+6006)
1/(x+1)(x+2002)=1/(3x+6006)
(x+1)(x+2002)=3x+6006
x²+2003x+2002=3x+6006
x²+2000x-4004=0
(x+2002)(x-2)=0
x=-2002,x=2
经检验x=-2002是增根,x=2是原方程的根
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点