在△ABC中,a、b、c分别为角A,B,C的对边,向量m=(cosA,sinA),向量n=(cosC,-sinC)且m·n=-1/2.①求cos^2A+cos^2C的取值范围②a=2,b=根号下7,求

在△ABC中,a、b、c分别为角A,B,C的对边,向量m=(cosA,sinA),向量n=(cosC,-sinC)且m·n=-1/2.①求cos^2A+cos^2C的取值范围②a=2,b=根号下7,求

题目
在△ABC中,a、b、c分别为角A,B,C的对边,向量m=(cosA,sinA),向量n=(cosC,-sinC)且m·n=-1/2.①求cos^2A+cos^2C的取值范围②a=2,b=根号下7,求△ABC的面积.
答案
①向量mx向量n=cosAcosC-sinAsinC=-1/2
又cosB=cos(180-A-C)=-cos(A+C)=-(cosAcosC-sinAsinC)
cosAcosC-sinAsinC=-1/2 ∴cosB=1/2即B=60°
cos^2A+cos^2C=2cos(A+C)cos(A-C)=2cos120°cos(120°-2C)= -cos(120°-2C)
∵0≤120°-2C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.