求曲面积分,∫∫zds,Σ:z=根号X^2+y^2在柱体x^2+y^2

求曲面积分,∫∫zds,Σ:z=根号X^2+y^2在柱体x^2+y^2

题目
求曲面积分,∫∫zds,Σ:z=根号X^2+y^2在柱体x^2+y^2
答案
∵z=√(x^2+y^2)
==>αz/αx=x/√(x^2+y^2),αz/αy=y/√(x^2+y^2)
∴ds=√[1+(αz/αx)^2+(αz/αy)^2]dxdy=√2dxdy
故 ∫∫zds=√2∫∫√(x^2+y^2)dxdy
=√2∫dθ∫r^2dr
=(8√2/3)∫(sinθ)^3dθ
=(8√2/3)∫[(cosθ)^2-1]d(cosθ)
=(8√2/3)(4/3)
=32√2/9.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.