抛物线x2=ay(a>0)的准线l与y轴交于点P,若l绕点P以每秒π12弧度的角速度按逆时针方向旋转t秒钟后,恰与抛物线第一次相切,则t等于(  ) A.1 B.2 C.3 D.4

抛物线x2=ay(a>0)的准线l与y轴交于点P,若l绕点P以每秒π12弧度的角速度按逆时针方向旋转t秒钟后,恰与抛物线第一次相切,则t等于(  ) A.1 B.2 C.3 D.4

题目
抛物线x2=ay(a>0)的准线l与y轴交于点P,若l绕点P以每秒
π
12
弧度的角速度按逆时针方向旋转t秒钟后,恰与抛物线第一次相切,则t等于(  )
A. 1
B. 2
C. 3
D. 4
答案
根据抛物线的方程x2=ay,得到p=
a
4

所以此抛物线的准线方程为y=-
a
4
,P坐标为(0,-
a
4
),
令恒过P点的直线y=kx-
a
4
与抛物线相切,
联立直线与抛物线得
y=
x2
a
y=kx−
a
4

消去y得:
x2
a
-kx+
a
4
=0,得到△=k2-1=0,即k2=1,
解得:k=1或k=-1,
由直线l绕点P逆时针旋转,k=-1不合题意,舍去,
则k=1,此时直线的倾斜角为
π
4
,又P的角速度为每秒
π
12
弧度,
所以直线l恰与抛物线第一次相切,则t=
π
4
π
12
=3.
故选C.
根据抛物线的方程,找出p的值,进而得到其准线方程和P的坐标,根据直线l过P点,设出直线l的斜率为k时与抛物线相切,表示出此时直线l的方程,与抛物线联立,消去y得到关于x的一元二次方程,令根的判别式等于0列出关于k的方程,求出方程的解即可得到k的值,从而确定出直线l的倾斜角,用求出的倾斜角除以角速度即可求出此时所用的时间t.

抛物线的简单性质.

本题以抛物线为载体,考查抛物线的简单性质,恒过定点的直线方程.当直线与曲线相切时,设出直线的方程,联立直线与曲线方程,消去一个字母后得到关于另一个字母的一元二次方程,利用根的判别式等于0,是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.