已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2). (1)求a的取值范围,并证明A、B两点都在原点O的左侧; (2)若抛物线与y轴交于点C,
题目
已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.
答案
(1)∵抛物线与x轴交于A(x
1,0),B(x
2,0)两点,且x
1≠x
2,
∴△=(1-2a)
2-4a
2>0.a<
.
又∵a≠0,
∴x
1•x
2=a
2>0,
即x
1、x
2必同号.
而x
1+x
2=-(1-2a)=2a-1<
-1=-
<0,
∴x
1、x
2必同为负数,
∴点A(x
1,0),B(x
2,0)都在原点的左侧.
(2)∵x
1、x
2同为负数,
∴由OA+OB=OC-2,
得-x
1-x
2=a
2-2
∴1-2a=a
2-2,
∴a
2+2a-3=0.
∴a
1=1,a
2=-3,
∵a<
,且a≠0,
∴a的值为-3.
(1)首先令抛物线的值y=0,可得出一个关于x的方程,那么x1•x2=a2>0,因此x1、x2同号,然后可根据抛物线与x轴有两个坐标不同的交点即方程的△>0以及x1+x2的值来得出点A、B均在原点O左侧.
(2)可先根据一元二次方程根与系数的关系用a表示出OA、OB的长,然后用a表示出OC的长,然后根据题中给出的等量关系:OA+OB=OC-2求出a的值.
二次函数综合题.
本题主要考查了二次函数与一元二次方程的关系以及一元二次方程根与系数的关系等知识点.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点