an=2n+1 1/Sn的前n项和为Tn 证明 1/3

an=2n+1 1/Sn的前n项和为Tn 证明 1/3

题目
an=2n+1 1/Sn的前n项和为Tn 证明 1/3
是1/3
答案
由等差数列求和,S[n] = n(a[1]+a[n])/2 = n(3+2n+1)/2 = n(n+2).
1/S[n] = 1/(n(n+2)) = 1/2·(1/n-1/(n+2)).
T[n] = 1/2·(1-1/3)+1/2·(1/2-1/4)+...+1/2·(1/n-1/(n+2)) = 1/2+1/4-1/(2n+2)-1/(2n+4) < 3/4.
而S[n] ≥ 0,故T[n]单调递增,T[n] ≥ T[1] = 1/S[1] = 1/a[1] = 1/3.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.