圆锥曲线求轨迹方程的.

圆锥曲线求轨迹方程的.

题目
圆锥曲线求轨迹方程的.
点P在分别在以F1,F2为左、右焦点的椭圆25分之X^2+9分之y^2=1上运动,则三角形F1F2P的重心G的轨迹方程是?
答案
X^2/25+y^2/9=1
c²=a²-b²=25-9=16
∴c=4,F1(-4,0),F2(4,0)
设P(x',y'),ΔF1F2P的重心G(x,y)
根据三角形重心公式
x=(-4+4+x')/3,y=(0+0+y')/3
∴x'=3x,y'=3y
∵P(x',y')在椭圆上,坐标满足椭圆方程
∴x'²/25+y'²/9=1
换成x,y
(3x)²/25+(3y)²/9=1
即重心G的轨迹方程是
9x²/25+y²=1 (y≠0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.