若△ABC的三边长是a、b、c且满足a4=b4+c4-b2c2,b4=c4+a4-a2c2,c4=a4+b4-a2b2,则△ABC是(  ) A.钝角三角形 B.直角三角形 C.等腰直角三角形 D.等

若△ABC的三边长是a、b、c且满足a4=b4+c4-b2c2,b4=c4+a4-a2c2,c4=a4+b4-a2b2,则△ABC是(  ) A.钝角三角形 B.直角三角形 C.等腰直角三角形 D.等

题目
若△ABC的三边长是a、b、c且满足a4=b4+c4-b2c2,b4=c4+a4-a2c2,c4=a4+b4-a2b2,则△ABC是(  )
A. 钝角三角形
B. 直角三角形
C. 等腰直角三角形
D. 等边三角形
答案

∵a4=b4+c4-b2c2,b4=c4+a4-a2c2,c4=a4+b4-a2b2
∴三式相加得a4+b4+c4-a2b2-a2c2-b2c2=0,
将上式配方可得(a2-b22+(b2-c22+(a2-c22=0,
可得a2-b2=0,b2-c2=0,a2-c2=0,
即a=b=c,
故选D.
本题的三个等式结构一样,孤立地从一个等式入手,都导不出a、b、c的关系,不妨从整体叠加入手.

完全平方公式;非负数的性质:偶次方.

本题实质考查完全平方公式的应用,将其看做一个整体,将三式叠加即可求出答案.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.