设f=(x)=x平方+px+q,p,q属于 R,M={x┆x=f(x)},N={x┆x=f(f(x))}.证明M属于N?
题目
设f=(x)=x平方+px+q,p,q属于 R,M={x┆x=f(x)},N={x┆x=f(f(x))}.证明M属于N?
答案
f(f(x))=(x平方+px+q)(x平方+px+q)+p(x平方+px+q)+q
取M中任意元素a,有a=f(a),即a平方+pa+q=a
f(f(a))=a^2+pa+q=a
所以a也属于N
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点