已知f(x)=x^3+ax^2+bx+3,且曲线y=f(x)在点(1,f1))处的切线方程为5x+y-3=0

已知f(x)=x^3+ax^2+bx+3,且曲线y=f(x)在点(1,f1))处的切线方程为5x+y-3=0

题目
已知f(x)=x^3+ax^2+bx+3,且曲线y=f(x)在点(1,f1))处的切线方程为5x+y-3=0
求a,b的值
答案
f'(x)=3x^2+2ax+b
f(1)=a+b+4,代入切线方程:5*1+a+b+4-3=0,即a+b=-6
由题意,切线斜率=f’(1)=-5=3+2a+b,即2a+b=-8
由上两式解得:a=-2,b=-4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.