等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.
题目
等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.
答案
△APQ为等边三角形.
证明:∵△ABC为等边三角形,
∴AB=AC.
在△ABP与△ACQ中,
∵
,
∴△ABP≌△ACQ(SAS).
∴AP=AQ,∠BAP=∠CAQ.
∵∠BAC=∠BAP+∠PAC=60°,
∴∠PAQ=∠CAQ+∠PAC=60°,
∴△APQ是等边三角形.
先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.
等边三角形的判定;全等三角形的判定与性质.
考查了等边三角形的判定及全等三角形的判定方法.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 很简单的三角函数..急
- 计算:(1).√1+1/1²+1/2²=______
- 海水蒸馏出来的是淡水吗
- You , she and i _______(be) friends 空格里应该填 are还是am ?
- 已知平面向量a,b(a≠0,a≠b),满足|a|=3,且b与b-a的夹角为6/π,则|b|的最大值为
- 立足高处,俯视下边的意思的词语.
- 中译英:机票买了吗?还没买,我明天去买.谁第一个回答并回答正确评最佳答案.
- 二项式(根号x-1/x)十次方 展开式中,常数项是?
- In summer,people need more ___(盐)than in winter..
- 100斤料扣8个水 程式 怎么算
热门考点