已知非零向量a,b的夹角为60°.且|a|=|b|=2.若向量c满足(a-c).(b-c)=0.则|c|的取值范围为?
题目
已知非零向量a,b的夹角为60°.且|a|=|b|=2.若向量c满足(a-c).(b-c)=0.则|c|的取值范围为?
是求取值范围...
答案
建立坐标系,以a、b的角平分线所在直线为x轴,
使得a的坐标为(√3,1),b的坐标为(√3,-1),
(坐标系的建立不是唯一的,但此种建法计算相对较为简单)
设c的坐标为(x,y),
则由已知,有(√3-x,1-y)(√3-x,-1-y)=0,
整理后有:(x-√3)^2+y^2=1
这是一个圆 .
要求|c|的最大值,即在圆上找一点离原点最远,显然应取(1+√3,0),此时有最大值1+√3 .
要求|c|的最小值,即在圆上找一点离原点最近,显然应取(√3-1,0),此时有最大值√3-1.
所以|c|的取值范围为[√3-1,√3+1].
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点