如图,AP是∠MAN的平分线,B是射线AN上的一点,以AB为直径作⊙O交AP于点C,过点C作CD⊥AM于点D. (1)判断直线DC与⊙O的位置关系,并说明理由; (2)若OA=6,AD=10,求CD的

如图,AP是∠MAN的平分线,B是射线AN上的一点,以AB为直径作⊙O交AP于点C,过点C作CD⊥AM于点D. (1)判断直线DC与⊙O的位置关系,并说明理由; (2)若OA=6,AD=10,求CD的

题目
如图,AP是∠MAN的平分线,B是射线AN上的一点,以AB为直径作⊙O交AP于点C,过点C作CD⊥AM于点D.

(1)判断直线DC与⊙O的位置关系,并说明理由;
(2)若OA=6,AD=10,求CD的长.
答案
(1)直线DC与⊙O相切.理由如下:
连接OC,如图,
∵OA=OC,
∴∠OAC=∠OCA,
∵AP平分∠MAN,
∴∠DAC=∠CAO,
∴∠DAC=∠OCA,
∴AD∥OC,
又∵AD⊥CD,
∴OC⊥CD,且O点为⊙O半径,
∴直线DC与⊙O相切;
(2)作CE⊥AB于E,如图,
∵AP平分∠MAN,CD⊥AM,
∴CD=CE,
在Rt△ADC和Rt△AEC中
CD=CE
AC=AC

∴Rt△ADC≌Rt△AEC(HL),
∴AE=AD=10,
∴OE=AE-OA=4,
在Rt△OCE中,OC=6,OE=4,
∴CE=
OC2−OE2
=2
5

∴CD=2
5
(1)连接OC,由OA=OC得∠OAC=∠OCA,由AP平分∠MAN得∠DAC=∠CAO,则∠DAC=∠OCA,根据平行线的判定得到AD∥OC,而AD⊥CD,所以OC⊥CD,然后根据切线的判定定理得到直线DC与⊙O相切;
(2)作CE⊥AB于E,先根据角平分线性质得CD=CE,在根据“HL”判断Rt△ADC≌Rt△AEC,得到AE=AD=10,则OE=4,在Rt△OCE中根据勾股定理计算出CE即可.

切线的判定;全等三角形的判定与性质.

本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和角平分线性质.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.