设x y∈R x²+y²=4 则2xy/(x+y-2)的最小值是

设x y∈R x²+y²=4 则2xy/(x+y-2)的最小值是

题目
设x y∈R x²+y²=4 则2xy/(x+y-2)的最小值是
答案
已知x²+y²=4,求2xy/(x+y-2)的最小值.
由于(x-y)²≥0,展开得:2xy≤x²+y²,则有:
x²+y²+2xy≤2(x²+y²)
(x+y)²≤2(x²+y²)=8
得:-2√2≤x+y≤2√2,
所以有:
2xy/(x+y-2)
=(x²+y²+2xy-4)/(x+y-2)
=[(x+y)²-4]/(x+y-2)
=(x+y+2)(x+y-2)/(x+y-2)
=x+y+2≥2-2√2
因此,2xy/(x+y-2)的最小值是2-2√2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.