23个不同的正整数的和是4845,问这23个数的最大公约数可能达到的最大值是多少?

23个不同的正整数的和是4845,问这23个数的最大公约数可能达到的最大值是多少?

题目
23个不同的正整数的和是4845,问这23个数的最大公约数可能达到的最大值是多少?
答案
设23个不同的正整数的最大公约数为d,则,
23个不同的正整数为:da1、da2、…、da23为互不相同正整数,
4845=da1+da2+…+da23=d(a1+a2+…+a23
a1+a2+…+a23最小为1+2+…+23=(23+1)×23÷2=276,
4845=3×5×17×19,
4845的约数中,大于276的最小约数是3×5×19=285,
即:a1+a2+…+a23最小为285,
∴最大公约数d可能达到的最大值=4845÷285=17.
答:这23个数的最大公约数可能达到的最大值是17.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.