如图所示,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分线DE交AB于D,交BC于E,若CE=3cm,求BE的长.

如图所示,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分线DE交AB于D,交BC于E,若CE=3cm,求BE的长.

题目
如图所示,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分线DE交AB于D,交BC于E,若CE=3cm,求BE的长.
答案
∵∠C=90°,∠BAC=60°,
∴∠B=90°-60°=30°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠BAE=∠B=30°,
∴∠CAE=∠BAE,
∴DE=CE=3cm,
又∵∠B=30°,
∴BE=2DE=2×3=6cm.
根据直角三角形两锐角互余求出∠B=30°,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠BAE=∠B=30°,然后求出∠CAE=∠BAE,再根据角平分线上的点到角的两边的距离相等可得DE=CE,根据直角三角形30°角所对的直角边等于斜边的一半解答即可.

线段垂直平分线的性质;含30度角的直角三角形.

本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,角平分线上的点到角的两边的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.