如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.求证:BC=DE.

如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.求证:BC=DE.

题目
如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.求证:BC=DE.
答案
证明:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC,
即∠BAC=∠DAE.
在△CAB和△EAD中
AB=AD
∠BAC=∠DAE
AC=AE

∴△CAB≌△EAD(SAS),
∴BC=DE.
先由等式的性质就可以得出∠CAB=∠EAD,在证明△CAB≌△EAD,由全等三角形的性质就可以得出结论.

全等三角形的判定与性质.

本题考查了等式的性质的运用,全等三角形的判定与性质的运用,解答时证明实际全等是关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.