定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.(1)证明:设M>0,N>0,若f(x),g(x
题目
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.(1)证明:设M>0,N>0,若f(x),g(x)在D上分别以M,N为上界.(2)求证:函数f(x)+g(x)在D上以M+N为上界.
答案
要证明函数f(x)+g(x)在D上以M+N为上界,那么就是证|f(x)+g(x)|≤M+N
而|f(x)+g(x)|≤|f(x)|+|g(x)|(三角不等式)≤M+N
所以函数f(x)+g(x)在D上以M+N为上界
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点