当X≥0时,证明f(x)=∫(0到x)(t-t^2)(sint)^(2n)dt的最大值不超过1/((2n+2)(2n+3))

当X≥0时,证明f(x)=∫(0到x)(t-t^2)(sint)^(2n)dt的最大值不超过1/((2n+2)(2n+3))

题目
当X≥0时,证明f(x)=∫(0到x)(t-t^2)(sint)^(2n)dt的最大值不超过1/((2n+2)(2n+3))
答案
因为f'(x)=(x-x^2)(sinx)^(2n)=x(1-x)(sinx)^(2n),由此知道
f(x)在[0,1]上递增,在[1,正无穷)上递减,f(1)是最大值,因此
只需证明f(1)=∫(0到1)(t-t^2)(sint)^(2n)dt<1/(2n+2)(2n+3)=1/(2n+2)-1/(2n+3).
由于0<=|sint|<=t,因此(t-t^2)(sint)^(2n)<=t^(2n+1)-t^(2n+2),不等式在[0,1]上积分
可得结论成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.