f(n)=1/(n+1) + 1/(n+2) + 1/(n+3) + …… + 1/(2n),(n∈整数,且n≥2),求函数f(n)的最小值.

f(n)=1/(n+1) + 1/(n+2) + 1/(n+3) + …… + 1/(2n),(n∈整数,且n≥2),求函数f(n)的最小值.

题目
f(n)=1/(n+1) + 1/(n+2) + 1/(n+3) + …… + 1/(2n),(n∈整数,且n≥2),求函数f(n)的最小值.
不知如何下手,望高手赐教,
答案
证明f(n)是个增函数就行了
用f(n+1)-f(n)
整理一下你很容易可以看出来的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.