已知a^3-3a^2+5a=1,b^3-3b^2+5b=5,求a+b的值?
题目
已知a^3-3a^2+5a=1,b^3-3b^2+5b=5,求a+b的值?
已知a1,a2,a3,......,an都为正数,且和为1,求证:a1^2/(a1+a2)+a2^2/(a2+a3)+......+an^2/(an+a1)>=1/2.
答案
第一题:
∵ x³-3x²+5x=(x-1)³+2(x-1)+3
∴ (a-1)³+2(a-1)+3=1 …… ①
(b-1)³+2(b-1)+3=5 …… ②
①+②得:令a-1 = m ; b-1 = n
m³+2m+n³+2n=0
(m+n)[m²-mn+n²]+2(m+n)=0
(m+n)[m²-mn+n²+2]=0
∵m²-mn+n² > 0 恒成立
∴ m+n=0
即:a-1+b-1= 0
∴ a+b = 2
第二题
由柯西不等式
[(a1+a2)+(a2+a3)+(a3+a4)+.+(an+a1)]*[a1^2/(a1+a2)+a2^2/(a2+a3)+……+an^2/(an+a1)]
≥ [√(a1^2)+√(a2^2)+...+√(an^2)]^2
即:
2*[a1^2/(a1+a2)+a2^2/(a2+a3)+……+an^2/(an+a1)]
≥(a1+a2+……+an)^2=1
所以:
a1^2/(a1+a2)+a2^2/(a2+a3)+……+an^2/(an+a1)≥1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点