△ABC的三边满足a4+b2c2-a2c2-b4=0,请判别△ABC的形状.
题目
△ABC的三边满足a4+b2c2-a2c2-b4=0,请判别△ABC的形状.
答案
a4+b2c2-a2c2-b4
=(a4-b4)+(b2c2-a2c2)
=(a2+b2)(a2-b2)-c2(a2-b2)
=(a2-b2)(a2+b2-c2)
=(a+b)(a-b)(a2+b2-c2)=0,
∵a+b>0,
∴a-b=0或a2+b2-c2=0,
即a=b或a2+b2=c2,
则△ABC为等腰三角形或直角三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点