如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE. (1)求证:DE是⊙O的切线; (2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?
题目
如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?
答案
(1)证明:连接OD,BD.
∵D是圆上一点
∴∠ADB=90°,∠BDC=90°
则△BDC是Rt△,且已知E为BC中点,
∴∠EDB=∠EBD.
又∵OD=OB且∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°.
∴DE是⊙O的切线.
(2)连接OD,BD,AE,OE,
∵∠EDO=∠ABC=90°,
若要AOED是平行四边形,则DE∥AB,D为AC中点
,
又∵BD⊥AC,
∴△ABC为等腰直角三角形,
∴∠CAB=45°,
所以当∠CAB为45°时,四边形AOED是平行四边形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 从塔顶静止释放小球,2米,小球两秒落地,已知小球自由下落是匀变速直线运动,
- 陈涉世家中而的用法
- 把下列各式分解因式:①(m-n)^2010-16(m-n)^2011
- 在饱和Ca(OH)2溶液中,放入少量CaO粉末,恢复至原温度
- 窗户的英语单词是什么
- 氧化物在熔融状态下可以用离子表示吗
- 小孔成像成的是什么像?
- 设函数f(x)=2sin(πx/2+π/5),若对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为
- I really want you, ah wife, you can give me second chance? You are my ah.是什么意思?
- 外箱上的CUFT代表材积,是一个什么样的单位?
热门考点