阅读下面的材料:把形如ax2+bx+c的二次三项式(或其中一部分)配成完全平方的形式,叫做配方法.配方的基本

阅读下面的材料:把形如ax2+bx+c的二次三项式(或其中一部分)配成完全平方的形式,叫做配方法.配方的基本

题目
阅读下面的材料:把形如ax2+bx+c的二次三项式(或其中一部分)配成完全平方的形式,叫做配方法.配方的基本
阅读下面的材料:把形如ax2+bx+c的二次三项式(或其中一部分)配成完全平方的形式,
叫做配方法.配方的基本形式是完全平方公式的逆运用,即a2±2ab+b2=(a±b)2.
例如:x2-2x+4=(x-1)2+3
x2-2x+4=(x-2)2+2x
x2-2x+4=( x-2)2+ x2.
以上是x2-4x+4的三种不同形式的配方(即“余项”分别是常数、一次项、二次项——见横线上的部分).
根据阅读材料解决以下问题:
(1)仿照上面的例子,写出x2-4x+2三种不同形式的配方;
(2)将a2+ab+b2配方(至少写出两种形式);
(3)已知a2+b2+c2-ab-6b-6c+21=0,求a、b、c)的值.
答案
(1)x²-4x+2=(x-2)²-2
x²-4x+2=(x-√2)²+(2√2-4)x
x²-4x+2=-2(2x-1)+x²
(2)a²+ab+b²=(a+b/2)²+3b²/4
a²+ab+b²=(a+b)²-ab
(3)a²+b²+c²-ab-6b-6c+21=0
(a-b/2)²+3(b-4)²/4+(c-3)²=0
因为(a-b/2)²≥0
3(b-4)²/4≥0
(c-3)²≥0
所以(a-b/2)²=0
3(b-4)²/4=0
(c-3)²=0
a=b/2,b=4,c=3
所以a=2,b=4,c=3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.