证明:简单多面体的每个面都是有奇数个边的多边形,则此多面体的棱数一定是偶数.

证明:简单多面体的每个面都是有奇数个边的多边形,则此多面体的棱数一定是偶数.

题目
证明:简单多面体的每个面都是有奇数个边的多边形,则此多面体的棱数一定是偶数.
答案
把所有的面所具有的棱数加起来除以二就是棱数,因为棱数一定是整数,所以面数肯定是偶数,这样的话,棱数是否是偶数取决于顶点数是否为偶数,这我不得而知.不过我发现你的命题是错误的,因为三角双锥(也就是两个正四面体拼起来)是一个反例,它的六个面都是三角形,可是它的棱数是九,是奇数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.