最早计算出圆周率的人:
题目
最早计算出圆周率的人:
答案
楼主,最早计算出圆周率的人是无法确定哪一个的,毕竟您得说明一下计算到哪一位数.
下面是计算圆周率的一些历史,楼主看看吧!
希腊欧几里德《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数.历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取pi=(4/3)^4≒3.1604 .第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值.
圆周率
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术.他用割圆术一直算到圆内接正192边形,得出π≈根号10 (约为3.16).
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7.他的辉煌成就比欧洲至少早了1000年.其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率.
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录.
德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数
无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加.1706年英国数学家梅钦计算π值突破100位小数大关.1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的.到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录.
电子计算机的出现使π值计算有了突飞猛进的发展.1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数.1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下最新的纪录.2010年1月7日——法国一工程师将圆周率算到小数点后27000亿位.2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 1到100中,满足既是4的倍数加1,又是5的倍数减1的所有质数的和为什么?
- a,b,c都是自然数,abc-ab-c=195,问abc?
- 司马迁“发愤著书”说有什么文学意义?
- 数列1,38,1,5,49,4,7,50,7,9,51,10,11,……的第100个数是多少?
- 依据“大漠孤烟直依,长河落日圆”两句诗写一段不少于100字的描写片段.
- 400字优秀作文
- 求一篇英语作文!(初中水平)关于你去过什么地方,对那里有什么深刻印象,介绍游览的城市80-100字!
- 已知正方体ABCD-A1B1C1D1中,点E,F分别是棱AA1,CC1的中点, 求证BF∥=ED1
- 四川话,要来使你,
- 要将一个质量为m,边长为a的匀质正立方体翻倒,推力对它做功为: