若n阶方阵A^3=0,怎么证明A-E和A+E都可逆?

若n阶方阵A^3=0,怎么证明A-E和A+E都可逆?

题目
若n阶方阵A^3=0,怎么证明A-E和A+E都可逆?
答案
E+A^3=(E+A)(E-A+A^2)=E
E-A^3=(E-A)(E+A+A^2)=E
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.