设f(x)=(a^x+a^y) (a>0),证明f(x+y)+f(x-y)=2f(x)f(y)

设f(x)=(a^x+a^y) (a>0),证明f(x+y)+f(x-y)=2f(x)f(y)

题目
设f(x)=(a^x+a^y) (a>0),证明f(x+y)+f(x-y)=2f(x)f(y)
设f(x)=(a^x+a^-x) (a>0),证明f(x+y)+f(x-y)=2f(x)f(y)
答案
f(x+y)=[a^(x+y)+a^(-x-y)]
f(x-y)=[a^(x-y)+a^(y-x)]
所以,f(x+y)+f(x-y)=a^(x+y)+a^(-x-y)+a^(x-y)+a^(y-x)
f(x)f(y)=2(a^x+a^-x)(a^y+a^-y)=a^(x+y)+a^(x-y)+a^(y-x)+a^(-x-y)
所以,f(x+y)+f(x-y)=f(x)f(y)
为何要证明的等式右边会有个2?
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.