对于任意给定的函数y=f(x),在同一平面直角坐标系内,函数y=f(x-1)与y=f(1-x)的图像关于【 】
题目
对于任意给定的函数y=f(x),在同一平面直角坐标系内,函数y=f(x-1)与y=f(1-x)的图像关于【 】
A.x轴对称
B.直线x+1=0对称
C.y轴对称
D.直线x-1=0对称
比如y=f(-x)为什么是y=f(1-x)向右平移得来的?
答案
选D.直线x-1=0对称
首先因为函数
y=f(x)关于y轴对称的函数为y=f(-x)
也就是说 y=f(x)与 y=f(-x)关于有轴对称
那么 y=f(x-1) 是y=f(x) 向右平移一个单位而来
y=f(1-x) =f{-(x-1)} 是 y=f(-x) 向右平移一个单位而来
所以 y=f(x-1) 与 y=f(1-x) =f{-(x-1)}
时图像 y=f(x)与y=f(-x)整体向右平移一个单位长度
故对称轴为 x=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点