已知函数f(x)在R上可导,且f(x)=x2+2x•f′(2),则f(-1)与f(1)的大小关系为( ) A.f(-1)=f(1) B.f(-1)>f(1) C.f(-1)<f(1) D.不确定
题目
已知函数f(x)在R上可导,且f(x)=x2+2x•f′(2),则f(-1)与f(1)的大小关系为( )
A. f(-1)=f(1)
B. f(-1)>f(1)
C. f(-1)<f(1)
D. 不确定
答案
f(x)=x2+2x•f′(2),∴f′(x)=2x+2f′(2)
∴f′(2)=4+2f′(2),∴f′(2)=-4,
∴f(x)=x2-8x,∴f′(x)=2x-8=2(x-4),
∴x<4时,f′(x)<0,f(x)为减函数,
由-1<1<4,得到f(-1)>f(1).
故选B
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点