如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于M交AC于点N,连接MN,则△AMN的周长为( ) A.5 B.6 C
题目
如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于M交AC于点N,连接MN,则△AMN的周长为( )
A. 5
B. 6
C. 7
D. 8
答案
∵△BDC是等腰三角形,且∠BDC=120°,
∴∠BCD=∠DBC=30°,
∵△ABC是边长为3的等边三角形,
∴∠ABC=∠BAC=∠BCA=60°,
∴∠DBA=∠DCA=90°,
延长AB至F,使BF=CN,连接DF,
在△BDF和△CND中,
∵
,
∴△BDF≌△CND(SAS),
∴∠BDF=∠CDN,DF=DN,
∵∠MDN=60°,
∴∠BDM+∠CDN=60°,
∴∠BDM+∠BDF=60°,
在△DMN和△DMF中,
∵
,
∴△DMN≌△DMF(SAS)
∴MN=MF,
∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.
故选B.
要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CND,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.
旋转的性质;全等三角形的判定与性质;等边三角形的性质.
此题考查了全等三角形的判定与性质,等边三角形的性质;主要利用等边三角形和等腰三角形的性质来证明三角形全等,构造另一个三角形是解题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 已知,三角形ABC中,AB=m,AC=n,角BAC=阿尔法,求证:三角形ABC的面积的1/2mnsin阿尔法
- 30%过氧化氢怎么样稀释成15%或20%?
- 梅花的样子,特点,作用是什么样的呢?
- The w------ usually shows you the menu wh you eat in a restaurant.
- 加工一批零件,甲独做20天完成,乙独做每天完成这批零件的1/30.现在两人合作完成这批零件,甲中途休息了2.5天,乙也休息了若干天,这样用了15天才全部完成,求乙休息了几天?
- 已知函数f(x)=xlnx,g(x)=x^3+ax^2-x+2,若 2f(x)≤g`(x)+2在x属于[1,2]上有解,求a的取值范围
- 与人体口腔上皮细胞相比,洋葱表皮细胞特有的内部结构是?
- 描写人物心理的好句
- 英语翻译:”沿着河往上走,在第二个路口右拐“.
- 矩形截面单筋梁截面尺寸b*h=200*500mm,混凝土C25,钢筋2级,弯矩设计值130kn m ,进行配筋计算.