函数f(x)在(0,+∞)连续,f(1)=5/2,对所有x,t∈(0,+∞),满足∫(1,x)f(u)du=t∫(1,x)f(u)du+x∫(1,t)f(u)du
题目
函数f(x)在(0,+∞)连续,f(1)=5/2,对所有x,t∈(0,+∞),满足∫(1,x)f(u)du=t∫(1,x)f(u)du+x∫(1,t)f(u)du
设函数f(x)在(0,+∞)连续,f(1)=5/2,且对所有x,t∈(0,+∞),满足∫(1,x)f(u)du=t∫(1,x)f(u)du+x∫(1,t)f(u)du,求f(x).
我对右边方程x求导,但是对最后一块∫(1,t)f(u)du不知道怎么算了,它是常数,但是答案没有这一块,算出来了,求指导,
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点