直线l被2x-y+4=0和4x+y-2=0截得的线段的中点恰为原点,则直线l的方程为
题目
直线l被2x-y+4=0和4x+y-2=0截得的线段的中点恰为原点,则直线l的方程为
答案
通过已知可知,直线l与两直线的交点关于原点对称,设一个点的坐标是(x,y),另一个点的坐标就是(-x,-y),所以2x-y+4=0,-4x-y-2=0,解这个方程组,x=-1,y=2,有直线l过原点,是正比例函数,所以y=-2x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点