求一个简单的二维概率密度

求一个简单的二维概率密度

题目
求一个简单的二维概率密度
设随机变量X,Y相互独立,他们的概率密度均为f(X)=EXP(-X);其中x>0.求Z=Y/X的概率密度.
答案
设z为实数,则P(Z<=z)=P(zX-Y>=0)
而由X,Y相互独立知他们的联合概率密度f(x,y)=e^(-x-y)(x>0,y>0)
所以P(zX-Y>=0)=e^(-x-y)在平面区域zx>=y上的积分.
当z<=0时,直线zx=y不过第一象限,所以显然积分值是0
当z>0时,不难算得这个积分值为z/(1+z)
至此算得P(Z<=z)=z/(1+z)(z>0)
上式对z求导得f(z)=1/(1+z)^2(z>0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.