A为3阶实对称矩阵,且满足条件A^2+A=0,已知A的秩r(A)=2,问:k为何值时,A+kE为正定矩阵
题目
A为3阶实对称矩阵,且满足条件A^2+A=0,已知A的秩r(A)=2,问:k为何值时,A+kE为正定矩阵
答案
k>1就行了 你可以把A看做diag(-1,-1,0) 其实相似变换下是不影响的 因为是对称阵总能对角化
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点