如图,已知四边形ABCD是梯形,DC∥AB,四边形ACED是平行四边形,延长DC交BE于点G,延长EC交AB于点H. (1)求证:CE=HC; (2)若CG=3,求BH的长.
题目
如图,已知四边形ABCD是梯形,DC∥AB,四边形ACED是平行四边形,延长DC交BE于点G,延长EC交AB于点H.
(1)求证:CE=HC;
(2)若CG=3,求BH的长.
答案
(1)证明:∵四边形ACED是平行四边形,
∴EC=AD,AD∥CE,
∵DC∥AB,
∴四边形AHCD是平行四边形,
∴AD=HC,
∴CE=HC;
(2)∵CE=HC,
∴C是EH的中点,
∵CG∥HB,
∴CG是△EHB的中位线,
∴HB=2CG=6.
(1)由四边形ACED是平行四边形,可得EC=AD,又由DC∥AB,易得四边形AHCD是平行四边形,即可得AD=HC,即可证得结论;
(2)由CE=HC,DC∥AB,可得CG是△EHB的中位线,即可求得BH的长.
梯形;三角形中位线定理;平行四边形的判定与性质.
此题考查了梯形的性质、平行四边形的判定与性质以及三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点