江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( ) A.10米 B.100米 C.30米 D.20米
题目
江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )
A. 10米
B. 100米
C. 30米
D. 20米
答案
如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45°,
设A处观测小船D的俯角为30°,连接BC、BD
Rt△ABC中,∠ACB=45°,可得BC=AB=30米
Rt△ABD中,∠ADB=30°,可得BD=
AB=30
米
在△BCD中,BC=30米,BD=30
米,∠CBD=30°,
由余弦定理可得:
CD
2=BC
2+BD
2-2BC•BDcos30°=900
∴CD=30米(负值舍去)
故选:C
利用直线与平面所以及俯角的定义,化为两个特殊直角三角形的计算,再在底面△BCD中用余弦定理即可求出两船距离.
解三角形的实际应用.
本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点