求解一道高数证明题

求解一道高数证明题

题目
求解一道高数证明题
设f(x)在(0,1)上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,且y=f(x)与y=x在(0,1)时有交点,证明:在(0,1)内至少有一个ξ,使f''(ξ)
答案
反证法:设y=f(x)与y=x在(0,1)的交点为 (x0,x0),0 在(x1,1)中,f'(x)>=0.即f(x)递增,于是 f(1)>=f(x1)>0 这与 f(1)=0 矛盾!于是至少有一个!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.