在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.
题目
在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.
答案
证明:过D作DM⊥AB,于M,DN⊥AC于N,即∠EMD=∠FND=90°,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN(角平分线性质),∵∠EAF+∠EDF=180°,∴∠MED+∠AFD=360°-180°=180°,∵∠AFD+∠NFD=180°,∴∠MED=∠NFD...
过D作DM⊥AB,于M,DN⊥AC于N,根据角平分线性质求出DN=DM,根据四边形的内角和定理和平角定义求出∠AED=∠CFD,根据全等三角形的判定AAS推出△EMD≌△FND即可.
全等三角形的判定与性质;角平分线的定义.
本题考查了全等三角形的判定和角平分线定义的应用,关键是正确作辅助线,进一步推出△EMD和△FND全等,通过做此题培养了学生运用定理进行推理的能力.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点