如图,在△ABC中,AB=AC,∠BAC=90°,BD是∠ABC的平分线,CE⊥BD,垂足是E,BA和CE的延长线交于点F. (1)在图中找出与△ABD全等的三角形,并说出全等的理由;(2)说明BD=
题目
如图,在△ABC中,AB=AC,∠BAC=90°,BD是∠ABC的平分线,CE⊥BD,垂足是E,BA和CE的延长线交于点F.
(1)在图中找出与△ABD全等的三角形,并说出全等的理由;
(2)说明BD=2EC;
(3)如果AB=5,求AD的长.
答案
证明:(1)△ABD≌△ACF.∵AB=AC,∠BAC=90°,∴∠FAC=∠BAC=90°,∵BD⊥CE,∠BAC=90°,∴∠ADB=∠EDC,∴∠ABD=∠ACF,∵在△ABD和△ACF中,∠BAD=∠CAFAB=AC∠ADB=∠ACF,∴△ABD≌△ACF(ASA),(2)∵△A...
(1)可利用ASA判断△ABD≌△ACF;
(2)根据(1)可得BD=CF,证明△BFE≌△BCE,可得出EF=CE=
CF,继而可得出结论;
(3)过D作DM⊥BC,设AD=DM=MC=x,则可得DC=
x,根据AD+DC=AC=AB=5,可得关于x的方程,解出即可得出答案.
全等三角形的判定与性质;等腰三角形的性质.
本题考查了全等三角形的判定与性质,注意掌握全等三角形的判定定理及等量代换的应用,第三问还可以根据BC=MB+MC,得出方程5+x=5,难度一般.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点